The rat as particle filter
نویسندگان
چکیده
The core tenet of Bayesian modeling is that subjects represent beliefs as distributions over possible hypotheses. Such models have fruitfully been applied to the study of learning in the context of animal conditioning experiments (and analogously designed human learning tasks), where they explain phenomena such as retrospective revaluation that seem to demonstrate that subjects entertain multiple hypotheses simultaneously. However, a recent quantitative analysis of individual subject records by Gallistel and colleagues cast doubt on a very broad family of conditioning models by showing that all of the key features the models capture about even simple learning curves are artifacts of averaging over subjects. Rather than smooth learning curves (which Bayesian models interpret as revealing the gradual tradeoff from prior to posterior as data accumulate), subjects acquire suddenly, and their predictions continue to fluctuate abruptly. These data demand revisiting the model of the individual versus the ensemble, and also raise the worry that more sophisticated behaviors thought to support Bayesian models might also emerge artifactually from averaging over the simpler behavior of individuals. We suggest that the suddenness of changes in subjects’ beliefs (as expressed in conditioned behavior) can be modeled by assuming they are conducting inference using sequential Monte Carlo sampling with a small number of samples — one, in our simulations. Ensemble behavior resembles exact Bayesian models since, as in particle filters, it averages over many samples. Further, the model is capable of exhibiting sophisticated behaviors like retrospective revaluation at the ensemble level, even given minimally sophisticated individuals that do not track uncertainty from trial to trial. These results point to the need for more sophisticated experimental analysis to test Bayesian models, and refocus theorizing on the individual, while at the same time clarifying why the ensemble may be of interest.
منابع مشابه
Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملA New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملکاهش تعداد ماهوارهها در یک سیستم ناوبری ترکیبی GPS/INS با استفاده از فیلتر ذرهای
The estimation of situation in a combinational navigation GPS/INS with least number of satellites is the main purpose of this paper. As inertial measurement unit uses altimeter for height measurement, we can assume which height poses certain amounts, whereas geographical length and width are unknown to us in this paper. The single difference GPS is employed for updating the inertial navigation ...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملThe Particle Filter and Extended Kalman Filter methods for the structural system identification considering various uncertainties
Structural system identification using recursive methods has been a research direction of increasing interest in recent decades. The two prominent methods, including the Extended Kalman Filter (EKF) and the Particle Filter (PF), also known as the Sequential Monte Carlo (SMC), are advantageous in this field. In this study, the system identification of a shake table test of a 4-story steel struct...
متن کاملA Secure Chaos-Based Communication Scheme in Multipath Fading Channels Using Particle Filtering
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. Unfortunately, despite the advantages of chaotic systems, Such as, noise-like correlation, easy hardware implementation, multitude of chaotic modes, flexible control of their dynamics, chaotic self-synchronization phenomena and potential communication confidence due to the very dynami...
متن کامل